

25G SFP28 Direct Attach Cable (DAC) Datasheet

General Description

SFP28 Direct Attach Cables are compliant with SFF-8432 and SFF-8402 specifications. Various choices of wire gauge are available from 30 to 26 AWG with various choices of cable length (up to 5m).

Features

- Up to 25.78125 Gbps data rate
- Up to 5 meter transmission
- Hot-pluggable SFP 20PIN footprint
- Improved Pluggable Form Factor(IPF) compliant for enhanced EMI/EMC performance
- Compatible to SFP28 MSA
- Compatible to SFF-8402 and SFF-8432
- Temperature Range: 0~ 70 °C
- RoHS Compatible

Benefits

- Cost-effective copper solution
- Lowest total system power solution
- Lowest total system EMI solution
- Optimized design for Signal Integrity

Applications

• 25G Ethernet

Product Description

 The SFP28 passive cable assemblies are high performance, cost effective I/O solutions for 25G Ethernet. SFP28 copper cables allow hardware manufactures to achieve high port density, configurability and utilization at a very low cost and reduced power budget

High Speed Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Note
Differential Impedance	RIN,P-P	90	100	110	Ω	
Insertion loss	SDD21	8		22.48	dB	At 12.8906 GHz
	SDD11	12.45		See 1	dB	At 0.05 to 4.1 GHz
Differential Return Loss	SDD22	3.12		See 2	dB	At 4.1 to 19 GHz
Common-mode to	22244					
common-mode	SCC11 SCC22	2			dB	At 0.2 to 19 GHz
output return loss	00022					
Differential to common-mode	SCD11	12		See 3		At 0.01 to 12.89 GHz
return loss	SCD22	10.58		See 4	dB	At 12.89 to 19 GHz
		10				At 0.01 to 12.89 GHz
Differential to common Mode Conversion Loss	SCD21-IL			See 5	dB	At 12.89 to 15.7 GHz
		6.3				At 15.7 to 19 GHz
Channel Operating Margin	СОМ	3			dB	

Notes:

- 1. Reflection Coefficient given by equation SDD11(dB) < 16.5 2 × SQRT(f), with f in GHz
- 2. Reflection Coefficient given by equation SDD11(dB) < 10.66 14 × log10(f/5.5), with f in GHz
- 3. Reflection Coefficient given by equation SCD11(dB) < 22 (20/25.78)*f, with f in GHz
- 4. Reflection Coefficient given by equation SCD11(dB) < 15 (6/25.78)*f, with f in GHz
- 5. Reflection Coefficient given by equation SCD21(dB) < 27 (29/22)*f, with f in GHz

Pin Descriptions

SFP28 Pin Function Definition

Pin	Logic	Symbol	Name/Description	Notes
1		VeeT	Transmitter Ground	
2	LV-TTL-O	TX_Fault	N/A	1
3	LV-TTL-I	TX_DIS	Transmitter Disable	2
4	LV-TTL-I/O	SDA	Tow Wire Serial Data	
5	LV-TTL-I	SCL	Tow Wire Serial Clock	
6		MOD_DEF0	Module present, connect to VeeT	
7	LV-TTL-I	RS0	N/A	1
8	LV-TTL-O	LOS	LOS of Signal	2
9	LV-TTL-I	RS1	N/A	1
10		VeeR	Reciever Ground	
11		VeeR	Reciever Ground	
12	CML-O	RD-	Reciever Data Inverted	
13	CML-O	RD+	Reciever Data Non-Inverted	
14		VeeR	Reciever Ground	
15		VccR	Reciever Supply 3.3V	
16		VccT	Transmitter Supply 3.3V	
17		VeeT	Transmitter Ground	
18	CML-I	TD+	Transmitter Data Non-Inverted	
19	CML_I	TD-	Transmitter Data Inverted	
20		VeeT	Transmitter Ground	

- 1. Signals not supported in SFP+ Copper pulled-downto VeeT with 30K ohms resistor
- 2. Passive cable assemblies do not support LOS and TX_DIS

Mechanical Specifications

The connector is compatible with the SFF-8432 specification.

Length (m)	Cable AWG
1	30
2	30
3	30/26
4	26
5	26

Regulatory Compliance

Feature	Test Method	Performance
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883C Method 3015.7	Class 1(>2000 Volts)
Electromagnetic Interference(EMI)	FCC Class B CENELEC EN55022 Class B CISPR22 ITE Class B	Compliant with Standards
RF Immunity(RFI) IEC61000-4-3		Typically Show no Measurable Effect from a 10V/m Field Swept from 80 to 1000MHz
RoHS Compliance	RoHS Directive 2011/65/EU and it's Amendment Directives 6/6	RoHS 6/6 compliant